Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
Q is empty.
↳ QTRS
↳ Overlay + Local Confluence
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
Q is empty.
The TRS is overlay and locally confluent. By [19] we can switch to innermost.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, a), b), c), d) → F(a, b)
F(f(f(f(j, a), b), c), d) → F(f(a, b), f(f(a, d), c))
F(f(f(f(j, a), b), c), d) → F(a, d)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, a), b), c), d) → F(a, b)
F(f(f(f(j, a), b), c), d) → F(f(a, b), f(f(a, d), c))
F(f(f(f(j, a), b), c), d) → F(a, d)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule F(f(f(f(j, a), b), c), d) → F(f(a, b), f(f(a, d), c)) at position [] we obtained the following new rules:
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(f(f(j, x0), x1), x2), y3), y2))
F(f(f(f(j, f(f(f(j, x0), x1), x2)), y1), y2), x3) → F(f(f(f(f(j, x0), x1), x2), y1), f(f(f(x0, x1), f(f(x0, x3), x2)), y2))
F(f(f(f(j, f(f(j, x0), x1)), y1), x3), x2) → F(f(f(f(j, x0), x1), y1), f(f(x0, x1), f(f(x0, x3), x2)))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(f(f(j, x0), x1), x2), y3), y2))
F(f(f(f(j, f(f(f(j, x0), x1), x2)), y1), y2), x3) → F(f(f(f(f(j, x0), x1), x2), y1), f(f(f(x0, x1), f(f(x0, x3), x2)), y2))
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, f(f(j, x0), x1)), y1), x3), x2) → F(f(f(f(j, x0), x1), y1), f(f(x0, x1), f(f(x0, x3), x2)))
F(f(f(f(j, a), b), c), d) → F(a, b)
F(f(f(f(j, a), b), c), d) → F(a, d)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(f(f(j, x0), x1), x2), y3), y2)) at position [1,0] we obtained the following new rules:
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(x0, x1), f(f(x0, y3), x2)), y2))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, f(f(f(j, x0), x1), x2)), y1), y2), x3) → F(f(f(f(f(j, x0), x1), x2), y1), f(f(f(x0, x1), f(f(x0, x3), x2)), y2))
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(x0, x1), f(f(x0, y3), x2)), y2))
F(f(f(f(j, f(f(j, x0), x1)), y1), x3), x2) → F(f(f(f(j, x0), x1), y1), f(f(x0, x1), f(f(x0, x3), x2)))
F(f(f(f(j, a), b), c), d) → F(a, b)
F(f(f(f(j, a), b), c), d) → F(a, d)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(f(f(f(j, f(f(f(j, x0), x1), x2)), y1), y2), x3) → F(f(f(f(f(j, x0), x1), x2), y1), f(f(f(x0, x1), f(f(x0, x3), x2)), y2)) at position [0] we obtained the following new rules:
F(f(f(f(j, f(f(f(j, x0), x1), x2)), y1), y2), x3) → F(f(f(x0, x1), f(f(x0, y1), x2)), f(f(f(x0, x1), f(f(x0, x3), x2)), y2))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ ForwardInstantiation
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(x0, x1), f(f(x0, y3), x2)), y2))
F(f(f(f(j, f(f(j, x0), x1)), y1), x3), x2) → F(f(f(f(j, x0), x1), y1), f(f(x0, x1), f(f(x0, x3), x2)))
F(f(f(f(j, a), b), c), d) → F(a, b)
F(f(f(f(j, a), b), c), d) → F(a, d)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule F(f(f(f(j, a), b), c), d) → F(a, b) we obtained the following new rules:
F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4), x1)
F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), x1), x2), x3) → F(f(f(f(j, y_0), y_1), y_2), x1)
F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), x1), x2), x3) → F(f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3), x1)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4), x1)
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), x1), x2), x3) → F(f(f(f(j, y_0), y_1), y_2), x1)
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(x0, x1), f(f(x0, y3), x2)), y2))
F(f(f(f(j, f(f(j, x0), x1)), y1), x3), x2) → F(f(f(f(j, x0), x1), y1), f(f(x0, x1), f(f(x0, x3), x2)))
F(f(f(f(j, a), b), c), d) → F(a, d)
F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), x1), x2), x3) → F(f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3), x1)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule F(f(f(f(j, a), b), c), d) → F(a, d) we obtained the following new rules:
F(f(f(f(j, f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), y_5), y_6)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), y_5), y_6), x3)
F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), x1), x2), x3) → F(f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3), x3)
F(f(f(f(j, f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), y_4), y_5)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), y_4), y_5), x3)
F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), x1), x2), x3) → F(f(f(f(j, y_0), y_1), y_2), x3)
F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4), x3)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ MNOCProof
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), y_5), y_6)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), y_5), y_6), x3)
F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), x1), x2), x3) → F(f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3), x3)
F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4), x1)
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(x0, x1), f(f(x0, y3), x2)), y2))
F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), x1), x2), x3) → F(f(f(f(j, y_0), y_1), y_2), x1)
F(f(f(f(j, f(f(j, x0), x1)), y1), x3), x2) → F(f(f(f(j, x0), x1), y1), f(f(x0, x1), f(f(x0, x3), x2)))
F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), x1), x2), x3) → F(f(f(f(j, y_0), y_1), y_2), x3)
F(f(f(f(j, f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), y_4), y_5)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), y_4), y_5), x3)
F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4), x3)
F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), x1), x2), x3) → F(f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3), x1)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
The set Q consists of the following terms:
f(f(f(f(j, x0), x1), x2), x3)
We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ Rewriting
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ ForwardInstantiation
↳ QDP
↳ MNOCProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F(f(f(f(j, f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), y_5), y_6)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), y_5), y_6), x3)
F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4), x1)
F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), x1), x2), x3) → F(f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3), x3)
F(f(f(f(j, a), b), c), d) → F(f(a, d), c)
F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), x1), x2), x3) → F(f(f(f(j, y_0), y_1), y_2), x1)
F(f(f(f(j, f(f(f(j, x0), x1), x2)), x3), y2), y3) → F(f(f(x0, x1), f(f(x0, x3), x2)), f(f(f(x0, x1), f(f(x0, y3), x2)), y2))
F(f(f(f(j, f(f(j, x0), x1)), y1), x3), x2) → F(f(f(f(j, x0), x1), y1), f(f(x0, x1), f(f(x0, x3), x2)))
F(f(f(f(j, f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), y_4), y_5)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), y_4), y_5), x3)
F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), x1), x2), x3) → F(f(f(f(j, y_0), y_1), y_2), x3)
F(f(f(f(j, f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4)), x1), x2), x3) → F(f(f(f(j, f(f(f(j, y_0), y_1), y_2)), y_3), y_4), x3)
F(f(f(f(j, f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3)), x1), x2), x3) → F(f(f(f(j, f(f(j, y_0), y_1)), y_2), y_3), x1)
The TRS R consists of the following rules:
f(f(f(f(j, a), b), c), d) → f(f(a, b), f(f(a, d), c))
Q is empty.
We have to consider all (P,Q,R)-chains.